If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3d^2+d=2
We move all terms to the left:
3d^2+d-(2)=0
a = 3; b = 1; c = -2;
Δ = b2-4ac
Δ = 12-4·3·(-2)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-5}{2*3}=\frac{-6}{6} =-1 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+5}{2*3}=\frac{4}{6} =2/3 $
| 3(v-6)=-5v+6 | | 4(3x+7)=-7+23 | | 0(x)=-x-2 | | -4/3(12k+27=57-9k | | 6=-8u+5(u+3) | | 3/5=x/10.5 | | 2(b+12)=b+8 | | 21-43=3(x-3)-4 | | -3.75x-6=30 | | 4y^2-9y=-4 | | 3(w+5)-6=3(3+w | | 8x+13=3x-10=12x-6= | | 11x+9.25=6x+6.2 | | 5-2/3z=1/3z+7 | | x^2=-3(3x+1) | | 5/4a-5=1/4a-10 | | u6=3 | | 8y-10=-2y+40 | | 6w-17w=55 | | Y=-7(x) | | )-4(x-2=3(2x4) | | G^2-7g+6=0 | | 17x—1+7x+5=84 | | 1/6x-3=5/6x+10 | | 8y-10=-2+40 | | 2(x+7)=-5+5(x-4) | | 4x-3=6x-29 | | 7x+7=9x+47 | | 2k^2=-6k-1 | | (3x—10)+(5x+14)=x | | 5a-14=4a+3 | | (3x—10)+(5x+14)=180 |